Examen du 4 janvier 2017 - 2h30

Le sujet comporte 2 pages. Les documents de cours ainsi que les calculatrices sont <u>interdits</u>. Dans chaque exercice, il est possible d'utiliser un résultat d'une question <u>précédente</u> sans pour autant l'avoir démontrée. Une attention toute particulière devra être portée sur la qualité de la rédaction, celle-ci doit être complète et synthétique. Le barême est donné à titre indicatif et pourra évoluer.

Exercice 1 (3 points)

Soit (X,Y) un vecteur gaussien centré tel que $\mathbf{E}(X^2)=4$, $\mathbf{E}(Y^2)=1$. On suppose de plus que 2X+Y et X-3Y sont indépendantes.

- 1. Que vaut la covariance Cov(2X + Y, X 3Y)?
- 2. En déduire la covariance Cov(X, Y).
- 3. Déterminer la matrice de covariance de (X, Y).
- 4. Montrer que le vecteur (X + Y, 2X Y) est gaussien puis déterminer sa matrice de covariance.

Exercice 2 (3 points)

Soient X et Y deux variables aléatoires réelles indépendantes, toutes deux de loi exponentielle de paramètre $\lambda > 0$.

1. Après avoir donner la densité du couple (X,Y), montrer que la densité de (X,X+Y) est donnée par

$$f_{(X,X+Y)}(x,y) = \lambda^2 e^{-\lambda y} \mathbf{1}_{\mathbb{R}_+}(y) \mathbf{1}_{[0,y]}(x)$$
, pour tout $(x,y) \in \mathbb{R}^2$.

- 2. En déduire la densité de X + Y.
- 3. Soit v > 0. Calculer la densité conditionnelle de X sachant X + Y = v puis identifier la loi.
- 4. En déduire $\mathbf{E}(X|X+Y)$.

Exercice 3 (4 points)

On considère X_1, X_2, X_3 et X_4 quatre variables aléatoires réelles indépendantes de même loi $\mathcal{N}(0,1)$. On pose $Y = X_1X_2 + X_3X_4$.

1. Montrer que la fonction caractéristique de X_1X_2 vaut

$$t \to \phi_{X_1 X_2}(t) = \mathbf{E}(e^{itX_1 X_2}) = \frac{1}{\sqrt{1+t^2}}.$$

- 2. En déduire la fonction caractéristique de Y.
- 3. Soit Z une variable aléatoire de densité $x \to e^{-|x|}/2$ par rapport à la mesure de Lebesgue sur \mathbb{R} . Calculer sa fonction caractéristique.
- 4. Conclure.

Problème 4 (10 points)

Dans tout le problème, log désigne le logarithme naturel et on convient que $\log 0 = -\infty$.

Partie I

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires positives indépendantes et identiquement distribuées satisfaisant $\mathbf{E}(|\log(X_1)|^2) < \infty$. On pose $m = \mathbf{E}(\log(X_1))$ et $\sigma^2 = \mathbf{V}(\log(X_1))$. Enfin, on définit, pour tout $n \geq 0$, la variable aléatoire $Y_n = \prod_{k=1}^n X_k$.

1. Justifier la convergence presque-sûre de $\frac{1}{n}\log(Y_n)$ vers une limite que l'on précisera. En déduire la convergence presque-sûre de $Y_n^{1/n}$ vers une limite que l'on précisera.

2. On définit pour tout $n \ge 0$

$$Z_n = \frac{\log(Y_n) - nm}{\sigma\sqrt{n}}.$$

La suite $(Z_n)_{n\geq 1}$ converge-t-elle en loi? vers quelle limite?

3. En déduire la convergence en loi de $(e^{-m\sqrt{n}}Y_n^{\frac{1}{\sqrt{n}}})_{n\geq 1}$ vers la variable aléatoire $e^{\sigma\Gamma}$ où Γ suit une loi normale centrée réduite. Justifier.

Partie II

Rappel:

Une fonction $f: \mathbb{R}^d \to \mathbb{R}^d$ est lipschitzienne si il existe une constante $k \geq 0$ telle que $||f(x) - f(y)|| \leq k||x - y||$.

On munit \mathbb{R}^d de la norme euclidienne notée $\|\cdot\|$. Soient \mathbb{X} un ensemble et $(f_{\varepsilon})_{\varepsilon \in \mathbb{X}}$ une famille de fonction lipschitzienne de \mathbb{R}^d dans \mathbb{R}^d . Pour chaque $\varepsilon \in \mathbb{X}$, on note c_{ε} la constante de Lipschitz, *i.e.*:

$$c_{\varepsilon} := \sup_{x,y \in \mathbb{R}^d: x \neq y} \frac{\|f_{\varepsilon}(x) - f_{\varepsilon}(y)\|}{\|x - y\|} = \inf \left\{ k \ge 0: \quad \forall (x,y) \in \mathbb{R}^d \times \mathbb{R}^d, \quad \|f(x) - f(y)\| \le k \|x - y\| \right\}.$$

Soit $X_0 \in \mathbb{R}^d$ de loi μ et $(\varepsilon_n)_{n\geq 0}$ une suite de variables aléatoires à valeurs dans \mathbb{X} indépendantes et identiquement distribuées. On suppose en outre que $(\varepsilon_n)_{n\geq 0}$ est indépendante de X_0 . On définit la suite de vecteurs aléatoires $(X_n)_{n\geq 0}$ par récurrence :

$$X_0 \sim \mu$$
 et pour tout $n \geq 0$: $X_{n+1} = f_{\varepsilon_n}(X_n)$.

- 1. Pourquoi $X_{n+1} = f_{\varepsilon_n} \circ f_{\varepsilon_{n-1}} \circ \cdots \circ f_{\varepsilon_0}(X_0)$ est-elle de même loi que $\widetilde{X}_{n+1} = f_{\varepsilon_0} \circ f_{\varepsilon_1} \circ \cdots \circ f_{\varepsilon_n}(X_0)$?
- 2. Pour les questions a), b) et c) suivantes, on suppose que $f_{\varepsilon_0}(X_0) X_0 \in \mathbf{L}^1$.
 - (a) Montrer que pour tout $k \geq 0$:

$$\|\widetilde{X}_{k+1} - \widetilde{X}_k\| \le \prod_{\ell=0}^{k-1} c_{\varepsilon_\ell} \|f_{\varepsilon_k}(X_0) - X_0\|$$

(b) Montrer que pour tout $n \ge 0$ et $p \ge 0$:

$$\|\widetilde{X}_{n+p} - \widetilde{X}_n\| \le \sum_{k=n}^{n+p-1} \prod_{\ell=0}^{k-1} c_{\varepsilon_{\ell}} \|f_{\varepsilon_k}(X_0) - X_0\|.$$

- (c) En déduire, sous la condition $\mathbf{E}(c_{\varepsilon_0}) < 1$, la convergence dans \mathbf{L}^1 de la suite $(\widetilde{X}_n)_{n\geq 0}$ (on montrera que $(\widetilde{X}_n)_{n\geq 0}$ est de Cauchy dans \mathbf{L}^1).
- 3. Pour les questions a),b) et c) suivantes, on suppose que $f_{\varepsilon_0}(X_0) X_0 \in \mathbf{L}^{\infty}$.
 - (a) En utilisant l'inégalité de la question 2b), montrer que pour tout $n \ge 0$ et tout $\delta > 0$

$$\mathbf{P}(\sup_{p\geq 0}\|\widetilde{X}_{n+p}-\widetilde{X}_n\|>\delta)\leq \mathbf{P}\left(\sup \text{ ess }\|f_{\varepsilon_0}(X_0)-X_0\|_{\infty}\sum_{k=n}^{\infty}\prod_{\ell=0}^{k-1}c_{\varepsilon_{\ell}}>\delta\right).$$

- (b) En utilisant le critère de Cauchy pour les séries numériques, montrer, sous la condition $\mathbf{E}(\log(c_{\varepsilon_0})) < 0$, que la série $\sum_{k=0}^{\infty} \prod_{\ell=0}^{k} c_{\varepsilon_{\ell}}$ est convergente presque-sûrement et en probabilité (on pourra utiliser le résultat de la question 1. de la partie I).
- (c) En déduire que $(\widetilde{X}_n)_{n\geq 0}$ converge presque-sûrement. On notera \widetilde{X}_{∞} la limite.
- 4. En supposant les conditions de la question 3 satisfaites, montrer que $(X_n)_{n\geq 0}$ converge en loi vers la loi de \widetilde{X}_{∞} .
- 5. Parmi les conditions $\mathbf{E}(c_{\varepsilon_0}) < 1$ et $\mathbf{E}(\log(c_{\varepsilon_0})) < 0$, laquelle est la plus faible?

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution - Partage dans les mêmes conditions 4.0 International".

